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Abstract

Two-level supersaturated designs (SSDs) are designs that examine more than n−
1 factors in n runs. Although SSD literature for both construction and analysis is
plentiful, the dearth of actual applications suggests that SSDs are still an unproven
tool. Whether using forward selection or all-subsets regression, it is easy to select
simple models from SSDs that explain a very large percentage of the total variation.
Hence, naive p-values can persuade the user that included factors are indeed active. We
propose the use of a global model randomization test in conjunction with all-subsets
to more appropriately select candidate models of interest. For settings where the large
number of factors makes repeated use of all-subsets expensive, we propose a short-cut
approximation for the p-values. Finally, we propose a randomization test for reducing
the number of terms in candidate models with small global p-values.

Keywords: Adjusted p-value; All-subsets regression; Effect sparsity; Forward selec-

tion; Global model test; Randomization test.
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1 Introduction and Motivating Example

The initial stage of experimentation often consists of an experiment involving many factors.

If the number of factors is very large and/or experimental runs are very expensive, then even

resolution III fractional factorials and strength 2 orthogonal arrays accommodating all the

factors become impractical. Two-level supersaturated designs (SSDs) were introduced to

handle such situations. Naturally, SSDs have too few runs to support estimating main

effects for all the factors, which is a source of ambiguity in any analysis. Consider the

following example.

Lin (1995) describes a SSD with 24 runs and 138 factors (denoted as X1−X138) based

on a case study for testing and validating an acquired immune deficiency syndrome (AIDS)

model. The response is the AIDS incidence rate per 100,000 persons. The SSD was con-

structed using a 24-run Hadamard design for X1−X23, with columns for the remaining 115

factors generated by two-factor interactions. Because the 24 observed incidence rates were

highly skewed, with the largest value more than triple all the rest, use of ln(Incidence Rate)

or some other transformation would have been advisable.

The success of SSDs depends on having a few dominant and essentially additive ef-

fects. That is, a first-order model with just a few terms must explain most of the variation.

So which are the main drivers for the AIDS incidence model? Lin (1995) used forward

selection to identify a model with 11 factors and R2 = 0.99; the first eight of these factors

(with R2 = 0.92) were selected for further study. However, is it true that just (11/138 =) 8%

or fewer of the 138 factors affect incidence rate?

It is possible to replicate Lin’s results through the first seven steps. However, the eighth

factor to enter is X71 rather than X76 as reported by Lin; see Table 1. Whereas this model

has the appearance of being useful, one can exclude the eight factors shown in Table 1,

repeat forward selection using the remaining 130 factors, and obtain comparable R2 and

(naive) p-values (see Figure 1). In particular, when 7 or 8 factors are included in the model,
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Table 1: Forward Selection for Lin (1995) AIDS Data

Step Factor naive p-value R2

1 X118 0.1171 0.1079
2 X25 0.0587 0.2505
3 X129 0.0265 0.4176
4 X13 0.0254 0.5554
5 X91 0.0109 0.6928
6 X93 0.0055 0.8072
7 X86 0.0055 0.8825
8 X71 0.0175 0.9204

(a) R2 (b) Naive p-value

Figure 1: Forward Selection R2 and Naive p-Value Comparisons

we see higher R2 and smaller p-values for the second forward selection model. A similar

result occurs if we exclude the 16 factors in the first and second models and rerun forward

selection with the remaining 122 factors! Clearly we must rely on more than naive p-values

in assessing the importance of factors in these model.

Lin (1995) ran a confirmatory 28−4 experiment for the first seven factors in Table 1 plus

X76. As a result, factors X13, X118, and X129 (with coefficients b13, b118, and b129, respec-

tively) are declared statistically significant. However, b13 changed sign, being positive in

the forward selection model but negative for the model fitted to the confirmation data, and

b118 is 1/100th of its former estimate. Certainly, one cannot hope to learn much from such

SSD data unless a very small subset of the factors truly explains most of the variation.
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Westfall et al. (1997) point out that nominal p-values offered by software provide an-

alysts with a misleading sense of confidence about the effects in the forward selection

regression model being real. To control Type I error rates, they recommend Monte Carlo

simulation using standard normal responses to determine valid p-values for each step. More

conveniently, they found that the Bonferroni inequality approximates well these adjusted p-

values; one simply has to multiply each nominal p-value by the number of eligible variables

at that step. Thus, the Bonferroni adjusted p-values for Table 1 are 138(.1171), 137(.0587),

etc. Since the first p-value is 1, by Westfall et al. (1997)’s approach, no terms are added

regardless the choice of α. One difficulty with forward selection when we actually control

the risk of overfitting is a substantial loss of power due to premature termination. That is,

controlling the risk of Type I error for SSDs fit using forward selection leads to very sparse

models.

Abraham et al. (1999) highlight forward selection’s propensity to miss the real active

factors and to select inactive ones instead due to the bias of regression estimates in simple

models caused by correlations among the factor columns. Since the aliasing structure in-

herent in a SSD can hide real effects or encourage identifying nonactive effects as active, it

is common for forward selection to be led astray by the entry of a nonactive effect. Further-

more, it is difficult or impossible for the forward selection procedure to recover from such

errors. Abraham et al. (1999) utilized eight different supersaturated subsets of the data of

Williams (1968), a 28-run Plackett-Burman design in 23 factors, to illustrate this deficiency

and found that all-subsets faired somewhat better.

Since models obtained by forward selection’s early steps are biased by omitted active

factors (see Miller (2002), Chapter 6), we concur with Abraham et al. (1999) that all-

subsets provides a better means to obtain candidate models. Table 2 provides models found

using all-subsets for ln(Incidence rate) for up to m = 6 terms in the model. Running one

all-subsets regression for m = 6 took approximately 7 hours to perform and is estimated
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Table 2: All-Subsets for Lin (1995) AIDS Data, Y = ln(Incidence rate)

Model Size Subset R2 Global p-Value*
1 118 0.366 0.164 (0.003)
1 63 0.295 0.534 (0.004)
1 39 0.274 0.675 (0.003)
2 87 118 0.587 0.158 (0.003)
2 66 118 0.523 0.529 (0.004)
2 74 118 0.519 0.546 (0.004)
3 55 87 118 0.709 0.36 (0.05)
3 6 87 118 0.708 0.39 (0.05)
3 85 87 118 0.691 0.56 (0.05)
4 18 58 63 105 0.811 0.52 (0.05)
4 3 75 85 87 0.809 0.54 (0.05)
4 6 87 118 121 0.801 0.63 (0.05)
5 3 48 75 85 87 0.880 0.61 (0.05)
5 6 63 66 118 130 0.878 0.65 (0.05)
5 18 58 63 105 120 0.876 0.66 (0.05)
6 10 25 87 103 118 133 0.932 > 0.50
6 66 72 77 101 118 121 0.932 > 0.50
6 31 67 87 118 122 123 0.931 > 0.52

*Parentheses indicate standard error, [p̂(1− p̂)/B]1/2, for estimated p-value.
Section 2 explains these p-value computations.

that even one all-subsets for m = 7 would take several days. However, since R2 values

above 93% have already been obtained, larger models are not expected to offer anything

useful. Similarity of R2 values among the best models of a given size is generally indicative

of models containing factors that are unimportant. This feature is evident for m≥ 3.

The only criticism of all-subsets regression is the computational challenge. Beattie

et al. (2002) consider all-subsets to be impractical even when a moderate number of factors

are active. For instance, a SSD with 23 factors and at most six active factors leads to

consideration of 145,498 models, which was deemed to be a formidable comparison by

those authors. However, we see that conducting 500 all-subsets regressions for a SSD with

23 factors and at most seven active factors (∑7
i=1
(23

i

)
= 390,655 models) took less than 5

minutes (i.e. less than 1 second for each all-subsets regression) using SAS or R software
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packages on a 1.1GHz Pentium. (As will be described shortly, repetition with all-subsets

will be necessary to compute p-values.) Therefore, the ever increasing rise in computing

abilities makes all-subsets regression more practical. Kelly and Voelkel (2000) suggested

examining all-subsets of effects up to size m, where m is chosen to be at least as large as

the maximum number of effects expected. We add the further condition that once models

with R2 > 0.90 have been obtained, there is rarely any need to consider larger models.

Bonferroni adjusted p-values provide a simple means of controlling the risk of Type

I errors for models obtained by forward selection. How can we control this risk when

selecting models using all-subsets? Beginning with Section 2, we answer this question by

proposing a permutation-based global test for all-subsets models as a method for evaluating

model significance. Realizing that all-subsets can indeed pose considerable computational

challenges, Section 3 considers an approximation to the p-values for the global model test

introduced in Section 2. Once we determine overall model significance, one should test for

the statistical significance of individual terms; in Section 4, we propose a permutation test

for reducing the number of terms in candidate models with small global p-values. Section

5 concludes the article with discussion and suggestions for future research.

2 Global Model Test for All-Subsets

The best models determined via all-subsets should be evaluated in terms of a global model

test. Permutation tests calculate the probability of getting a test statistic value equal to or

more extreme than the observed value under a specified null hypothesis by recalculating the

test statistic after random shuffling of the data. Recent work in this area for linear regres-

sion models can be found in Anderson and Legendre (1999) and Anderson and Robinson

(2001). Anderson (2001) provides a thorough review of permutation test procedures, con-

solidates recent findings, and provides practical recommendations for practitioners. For a

book length treatment, see Manly (1997), among others.
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Consider the model,

Y = β0 +β1X1 +β2X2 + ...+βqXq + ε

and suppose we want to test the global null hypothesis H0 : β1 = β2 = ... = βq = 0. An

appropriate test statistic, among others, is the usual coefficient of determination (R2). In

order to conduct a permutation test, one needs to consider what is exchangeable under a

true null hypothesis (i.e. Y = β0 + ε). Under the assumption that the errors, ε, are i.i.d.,

the observations are exchangeable, which means that if Y has no relationship with any of

the explanatory variables, X1, ...,Xq, then the values obtained for Y could have been ob-

served in any order. Thus, an exact p-value for the above hypothesis test, conditional on

the observations, is obtained by fitting every permutation of Y . An estimate p̂ is obtained

by randomly permuting Y , leaving X1, ...,Xq fixed, and recalculating R2 for each of B per-

mutations (denoted by R2(b)). That is, calculate

p̂ =
#(R2(b) ≥ R2)

B
, (2.1)

where # means ‘number of’.

The analysis strategy proposed thus far can be summarized as follows:

1. All-Subsets Regression. Perform all-subsets regression and retain the best few models

of each size under consideration. The user has considerable freedom in this step with

regards to the maximum model size, m, as well as the number of candidate models

retained for further exploration.

2. Global Model Test. For each model under consideration, perform a test of the global

null hypothesis (H0 : β1 = β2 = ... = βq = 0). Any model failing this test need not be

examined further. A permutation test for the global null hypothesis of a model with

q variables is conducted as follows:
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(a) Compute R2 for a model of interest.

(b) For each of B permutations (shuffling) of the response, Y , perform all-subsets

regression for models of size q and select the model with largest R2. Denote

this R2 as R2(b).

(c) Compute (2.1) and its standard error, [p̂(1− p̂)/B]1/2. Thus, we estimate the

probability (under the null hypothesis) of finding an R2 greater than that ob-

served for the model fit to the observed data. A small p-value is evidence that

one or more terms is accounting for systematic variation in the data.

Once the permutation distribution of R2(b) is obtained for models of a given size, the

global p-value for all models of that size are easily estimated. Thus, there is no added

computational burden to considering several models of size q rather than just the best one.

If possible, we recommend using at least B = 1000 for each size model. However, this

choice is not absolute, as we illustrate for the AIDS data.

2.1 Example 1: AIDS Data Global Test p-Values

Estimated p-values (and their standard errors) for the models in Table 2 were obtained as

described above. For q = 1 and 2, where the number of possible models is small, we used B

= 20,000 and so have small standard errors. For q = 3, 4, and 5, we used B = 100; because

these estimated p-values all exceed 0.35, greater precision is not required to identify that

these models do no better in explaining ln(Incidence rate) than all-subsets would typically

do in explaining random error. For p-values in the range 0.05 to 0.10, which are relevant

values for α in the SSD context, the standard errors for the estimated p-value with B =

100 are [p(1− p)/B]1/2 = 0.022 and 0.030, respectively. If this does not provide sufficient

precision, then either increase B or use the approximation discussed in the next section.

For q = 6 where even B = 10 repetitions of all-subsets is a challenge, one may adopt a
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hybrid strategy of using all subsets for models of size q1 < q; then for the best (50–100)

models of size q1 obtained via permutation of the response, we add q− q1 terms using

forward selection. The best R2 for each permutation serves as a lower bound for the R2(b)

that would have been obtained using all-subsets for models of size q. The lower bounds for

q = 6 in Table 2 were obtained using q1 = 5 and B = 100.

The models shown in Table 2 show little evidence for explaining systematic variation in

ln(Incidence rate). The single variable model consisting of X118 and the two-factor model

that adds X87 each have a p-value of approximately 0.16. Since these are the smallest p-

values for all the models considered, we surmise that the extreme effect sparsity and effect

additivity required for SSDs to be informative likely do not hold for the AIDS model.

2.2 Example 2: 5th Fraction of Williams Data

Abraham et al. (1999) analyzed eight different half-fractions of Williams’ rubber data (see

p. 136). Here we provide global p-values for all-subsets models fitted to their fractions

3 and 5. Lenth’s analysis of the full 28 run Plackett-Burman design identifies factor 15

as active, but nothing else. Using additional experimentation, Williams concluded that

factors 17 and 20 also had a major effect. Lin (1993) constructed a SSD which corresponds

to Abraham et al. (1999)’s fraction 5. Table 3 shows the best three models of each size

obtained by all-subsets for up to m = 7 terms. Permutation test p-values were obtained

using B = 20,000 for models with five or fewer terms and B = 4,000 for larger models.

From Table 3’s 4th column, we note twelve models that appear “remarkable” and worthy

of further study based on a significance level of 10%. Based on our earlier rule, we might

have stopped at m = 4, since this produced models with R2 > 0.9. Note the similarity of R2

values among the best models of each size for q = 5, 6, and 7. We will see later whether it

was useful to fit these larger models.

Westfall et al. (1997) found p-values by simulating data from a standard normal distri-
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bution. One could compute the null distribution of R2(b) by simulating standard normal Y ’s

rather than permuting the data; see the last column of Table 3 for the outcome. When the

assumptions of normal theory tests are satisfied, the permutation test and normal theory test

agree (Manly (1997)). On the other hand, if the data contains one or more anomalous val-

ues, the tests may not agree. Clearly, there are marked differences among the global model

p-values based on the permutation test and those based on simulating from a N(0,1), es-

pecially for q = 2 here. A histogram of the response (not shown) is right skewed with one

extreme value, providing some justification for the discepancies. As randomization tests

are conditional on the observed data, their use has more relevance than the normal test.

Table 3: All-Subsets and Global Model p-values for Williams’ Fraction 5

Model Size Subset R2 P(R2(b) ≥ R2) P(R2(b) ≥ R2)
(Permutation)* (Normal)*

1 15 0.6317 0.013 0.016
1 17 0.3209 0.537 0.643
1 2 0.1202 1.000 1.000
2 12 15 0.7401 0.005 0.075
2 15 20 0.7225 0.011 0.102
2 15 17 0.6942 0.020 0.160
3 12 15 20 0.8705 0.027 0.055
3 4 15 20 0.8192 0.134 0.201
3 12 15 23 0.8120 0.153 0.229
4 4 12 15 20 0.9548 0.011 0.014
4 12 13 15 20 0.9011 0.118 0.227
4 10 12 15 20 0.9004 0.122 0.232
5 4 10 12 15 20 0.9730 0.025 0.044
5 1 4 12 15 20 0.9697 0.036 0.063
5 4 12 15 20 21 0.9688 0.040 0.068
6 4 10 11 12 15 20 0.9867 0.07 0.09
6 4 10 12 15 20 21 0.9826 0.14 0.17
6 1 4 10 12 15 20 0.9817 0.17 0.19
7 4 7 10 11 12 15 20 0.9982 0.01 0.01
7 2 4 5 12 15 20 21 0.9953 0.09 0.11
7 1 4 10 11 12 15 20 0.9935 0.20 0.23

* P-values based on B = 20,000 permutations for m = 1–5 and B = 4,000 for m = 6, 7.
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2.3 Example 3: 3rd Fraction of Williams Data

Table 4 shows the results of all-subsets as well as the global model p-values for Abraham

et al. (1999)’s 3rd fraction of the Williams data. For this subset, eight models have global

p-values that are less than 0.1. Note that none of the models chosen by the global model

test in this supersaturated subset are the same as those for Example 2! However every

statistically significant model but one in Tables 3 and 4 contains factor 15.

Table 4: All-Subsets and Global Model p-values for Williams’ Fraction 3

Global P-value
Model Size Subset R2 (Permutation)*

1 15 0.5558 0.012
1 8 0.4021 0.289
1 17 0.1487 0.999
2 15 20 0.7287 0.018
2 8 15 0.6770 0.134
2 15 17 0.6353 0.315
3 5 8 15 0.8544 0.086
3 3 15 20 0.8020 0.318
3 1 8 15 0.8020 0.318
4 1 5 8 15 0.9568 0.016
4 5 8 15 20 0.9166 0.115
4 5 8 12 15 0.8844 0.334
5 1 5 8 15 21 0.9741 0.043
5 1 5 8 12 15 0.9710 0.058
5 1 5 8 15 22 0.9695 0.068
6 1 5 8 11 15 22 0.9851 0.15
6 1 5 8 12 15 21 0.9839 0.17
6 5 6 8 10 18 21 0.9830 0.19
7 1 5 6 8 10 18 21 0.9976 0.03
7 1 4 5 8 11 15 22 0.9945 0.18
7 1 5 8 11 12 15 22 0.9943 0.20

* P-values based on B = 20,000 permutations for m = 1–5 and B = 4,000
for m = 6, 7.
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3 Approximating p-Values when Repeating All-Subsets Is

Infeasible

Here we provide a simple means of approximating the p-value for cases where q is too

large for repetition for all subsets to be feasible. It is well known that the null distribution

of R2 for a particular subset follows a beta distribution (Miller (2002), Chapter 4). Thus,

we propose an approximation for the global p-value as

p̃ = 1−P[X(α,β) < R2]M, (3.1)

where α = q/2, β = (n−q−1)/2, X(α,β) is a beta random variable, and M is a function

of
(k

q

)
, the number of models explored by all-subsets. If the R2 values for the

(k
q

)
subsets

were independently distributed (and the errors were normally distributed), then M would

equal
(k

q

)
. However, we can observe empirically that a smaller value for M is needed.

Using the normal-based distributions for R2(b) from Example 2, we estimated the 50th,

80th, and 90th percentiles of the null distribution for the best all-subsets R2. Let Xr denote

the rth quantile. Then

M̃ = ln(r)/(lnP[X(α,β) < Xr])

is the value of M for which the approximation (3.1) matches the true probability for a p-

value of 1− r. Figure 2 shows a plot of M̃ on a logarithmic scale as a function of q. Three

facts are evident from this plot. First, the appropriate value for M̃ is less than
(k

q

)
. Second,

the value of M̃ is similar for various quantiles, with upper tail probabilities requiring a

slightly larger M̃ than for the median. Third, the logarithm of M̃ is very nearly a linear

function of q, especially for the median.

The relationship between M̃ and q suggests the following approximation. For small q,

it is presumed that one can perform all subsets regression repeatedly and so estimate the
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Figure 2: Plot of log(M̃) vs. q

required quantiles of R2(b). Using these data, a model is fitted for ln(M̃) as a function of q

and fitted values for ln(M̃) at larger q are obtained. Then (3.1) can be used to approximate

p-values where repeating all-subsets is not feasible. We now illustrate this calculation for

the AIDS data.

Table 5 shows the medians for R2(b) for q = 1, 2, ..., 5, each based on B = 100. Using

these medians from the permutation R2(b) distributions, we obtain M̃. For instance, for q =

1, M̃ = ln(0.5)/ln(P[X(0.5,11) < 0.295]) = 113.8. We regress ln(M̃) on q; the linear model

l̂n(M̃) = 1.787746+2.890922q

explains 99.975% of the variation in ln(M̃). Now substitute q = 6 and exponentiate to obtain

M̃ = exp(19.1333) = 2.03928×107. The approximate p-value for R2 = 0.932 is

1−P[X(6/2,17/2) < 0.932]20392800 = 0.657.

Thus, none of the six-factor models show any evidence of explaining systematic variation.
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Table 5: Median R2(b) Values for AIDS Data Based on Permutations of Y = ln(Incidence
Rate

q α β
(k

q

)
median R2 M̃

1 0.5 11.0 138 0.295 113.8
2 1.0 10.5 9453 0.525 1738.1
3 1.5 10.0 428536 0.699 35578.6
4 2.0 9.5 14463090 0.813 671661.4
5 2.5 9.0 387610812 0.887 10968847
6 3.0 8.5 8592039666

4 Choosing Factors of Interest

Given a model with a small global test p-value, one would then want to test H0,i : βi = 0

for individual i = 1,2, ...,q. In order to handle the multiple testing problem in this situa-

tion, individual tests are made more conservative by adjusting naive p-values. Procedures

developed to do so are often designed to control the experimentwise error rate (EER).

Bonferroni adjusted p-values are computed by multiplying the naive p-value times the

number of eligible factors not in the model, plus one for the factor under consideration.

That is, pi,Bon f = min((k− q + 1)pi,1). While suitable for models obtained by forward

selection (Westfall et al. 1997), Table 7 shows that these Bonferroni p-values are not an

adequate adjustment in the context of models chosen by all-subsets. Clearly, too many

terms are identified as significant using both the naive and Bonferroni adjusted p-values.

Westfall and Young (1993) discuss resampling-based procedures for computing ad-

justed p-values that are more conservative than the Bonferroni adjustment. The single-step

maxT procedure adjusts all p-values according to the maximum t-statistic distribution. Im-

proved power over this single-step approach can be achieved by adopting a step-down

procedure that adjusts only the minimum p-value according to the maximum t-statistic

distribution. The remaining p-values are then adjusted based on smaller and smaller sets

of t-statistics. Let the ordered naive p-values, p(1) < p(2) < ... < p(q), have fixed indices
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i1, i2, ..., iq based on the order of the original hypotheses. The step-down resampling-based

adjusted p-values are defined sequentially as follows:

p̃(1) = P

(
min

`∈{i1,...,iq}
p∗` ≤ p(1)|all H0, j are true

)
...

p̃( j) = max

[
p̃( j−1),P

(
min

`∈{i j,...,iq}
p∗` ≤ p( j)|all H0, j are true

)]
(4.1)

...

p̃(q) = max
[

p̃(q−1),P(p∗iq ≤ p( j)|all H0, j are true)
]

where p∗j represents a resampling-based p-value. Use of “max” in (4.1) enforces mono-

tonicity of the adjusted p-values. We slightly modify the step-down procedure in order to

incorporate the variable selection procedure into the computation of adjusted p-values. The

procedure is as follows:

1. For a candidate model of interest of size q (denoted by Mq), compute the t-statistic

for each term in the model (denoted by t j).

2. Compute the residuals of Mq, which we denote as ε̂Mq
. The distribution of the test

statistics depends only on ε̂Mq
under the complete null hypothesis (i. e., all H0, j are

true). Therefore, this distribution is estimated by permuting ε̂Mq
.

3. For each of the B permutations of ε̂Mq
,

(a) Perform all-subsets regression and locate the best model of size q and compute

the t-statistic for each term in the model (denoted by t(b)
j ).
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(b) Compute

u(b)
q = t(b)

iq

u(b)
q−1 = max(u(b)

q , t(b)
iq−1

)

u(b)
q−2 = max(u(b)

q−1, t
(b)
iq−2

)

...

u(b)
1 = max(u(b)

2 , t(b)
i1 )

4. For each j = 1,2, ...,q, compute the adjusted p-value

p̃( j) = #
(

u(b)
j ≥ ti j

)
/B. (4.2)

5. Enforce monotonicity of the adjusted p-values using successive maximization.

Note that step 3 does require repeated use of all-subsets. Further research is suggested

for an approximation to this resampling procedure when using all-subsets.

For orthogonal designs with effect sparsity, the p-values from (4.2) are similar to Lenth’s

experimentwise p-values. For the full n = 28 Plackett-Burman design of Williams (1968),

Lenth’s method implemented in JMP using the 27 othogonal columns provides (simultane-

ous) p-values of 0.042 and 0.418 for X15 and X20, respectively. Table 6 shows the largest five

estimates. Experimentwise error rate bounds as large as α=0.2 or even α=0.5 are typical

(Daniel (1959)). Thus, Lenth’s method points to either one or two effects. Implementing

the step-down Lenth method of Ye et al. (2001) yielded p-values identical to those found in

Table 6. This is due to the Lenth PSE remaining the same for each successive step.

Performing the modified step-down procedure for m = 5 produces p-values of 0.022,

0.537, 0.647, 0.756, and 0.756 for X15, X20, X17, X4, and X22, respectively. This analysis

would lead one to conclude that X15 is active, but not necessarily any other factors. In
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Table 6: Lenth Analysis of Full Williams Data, n = 28

Term Estimate Lenth t Individual p-Value Experimentwise p-Value
X15 -43.179 -4.13 0.002 0.042
X20 -24.393 -2.34 0.032 0.418
X17 -21.393 -2.05 0.054 0.607
X4 18.250 1.75 0.091 0.816
X22 -16.107 -1.54 0.126 0.920
...

practice, the least significant factor would then be dropped, and the reduced model tested.

For the reduced model containing only X15 and X20, the adjusted p-values are 0.005 and

0.455, respectively. Thus, the adjusted p-values also indicate one and possibly two active

effects for this orthogonal design.

As seen in Table 7, the modified step-down procedure produces more conservative p-

values than the Bonferroni adjusted p-values as desired. Adjusted p-values for the best

model of each size in Table 3 are shown in Table 7. Note that all models are nested within

the best seven variable model, which clearly has unimportant terms. Removing the least

significant term (X7), fitting the reduced model, and computing adjusted p-values also sug-

gests that further reduction is required. Successive model reduction indicates that likely the

only active factor is X15, which agrees with our previous analysis of the full data.

A small simulation study (as outlined in Westfall et al. (1997), section 4.3) is per-

formed to investigate power and experimentwise error rate control of the modified step-

down procedure. Using the 14-run design of Example 2, data were generated from the

model Y = Xβ + ε, where X is the design matrix plus a column of 1’s and ε ∼ N(0,1).

The number of active effects considered are 0, 1, ..., 5 and are assumed to have the same

size, β/σ = 5 with varying signs. As in Westfall et al. (1997), active effects occur only for

the first five variables given the near symmetry of this SSD. Furthermore, we follow their

notation to indicate the number of and signs of active effects. For example, “2+-” indicates

17



(β1,β2) = (5,−5). For each scenario, the EER, power for at least one effect, and power for

all effects are tabulated.

Two loops were required: an outer loop generated 1000 response vectors while an inner

loop performed 500 all-subsets up to m = 5 terms in the model in order to tabulate the

adjusted p-values. The choice of m = 5 for each case is consistent with the effect sparsity

assumption in which one would expect at most 20% of the factorial effects to be active (i.e.

d0.2∗23e = 5). Results are shown in Table 8 for α=0.05, 0.1, 0.2, 0.5 and indicate very

favorable performance of the modified step-down procedure. Control of the EER is at or

below the nominal level while power is at or above 0.843 for all scenarios considered.

A large decrease in EER among cases “0”, “1”, and “2” is evident. Empirical investi-

gation revealed that the absolute t-statistics for non-active effects become smaller as active

effects are included in the model. For example, it was determined via simulation that

E(|ti| |H0,i, i = 1, ...,5 is true)=5.17 while for case “1”, E(|ti| |H0,i, i = 2, ...,5 is true)=4.46.

This naturally lends itself to larger adjusted p-values for non-active effects and hence, fewer

Type I errors. This occurrence appears to be more pronounced for SSDs due to the corre-

lations among effect estimates. That is, performing the same simulation study using the

full 28-run Plackett-Burman design indicates a less prominent decrease in EER as active

effects are added to the model. For instance, with case “1”, we observe EERs of 0.03, 0.08,

0.17, and 0.46 for α = 0.05,0.1,0.2 and 0.5, respectively.

5 Discussion

5.1 Some Advice Regarding Use of SSDs

Why was the AIDS model SSD so unsuccessful? While Lin’s forward selection analysis of

a SSD identified 11 active factors out of 138, randomization procedures suggest that one

cannot be sure that anything useful was learned. This example provides an indication that
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Table 7: Naive and Adjusted p-Values for Best Table 3 Models

P-values
Term t-ratio Naı̈ve Bonferroni Permutation

12 -2.14 0.055 1.000 0.877
15 -5.42 0.000 0.004 0.001
12 -3.38 0.002 0.042 0.696
15 -7.75 0.000 0.002 0.001
20 -3.17 0.001 0.021 0.696
4 4.09 0.003 0.054 0.455

12 -5.19 0.001 0.012 0.376
15 -12.96 0.000 0.002 0.002
20 -5.86 0.000 0.004 0.338
4 4.64 0.002 0.032 0.760

10 -2.33 0.048 0.918 0.972
12 -6.63 0.000 0.004 0.535
15 -15.96 0.000 0.002 0.011
20 -6.80 0.000 0.002 0.535
4 6.46 0.000 0.054 0.818

10 -3.29 0.013 0.239 0.988
11 2.68 0.032 0.567 0.988
12 -8.35 0.000 0.002 0.638
15 -21.01 0.000 0.002 0.022
20 -9.31 0.000 0.002 0.567
4 14.91 0.000 0.017 0.390
7 -6.27 0.001 0.014 0.813

10 -9.16 0.000 0.002 0.812
11 7.95 0.000 0.003 0.813
12 -20.04 0.000 0.002 0.206
15 -50.52 0.000 0.002 0.001
20 -24.04 0.000 0.002 0.098

SSDs will not be useful unless interactions can be ignored and only a very small subset of

the factors truly explains most of the systematic variation.

For unreplicated full factorials and fractional factorials of strength two, the effect spar-

sity assumption plays an important role in the analysis of these experiments in order to

obtain an estimate of the error variance, σ2 (see, for example, Lenth (1989)). In the case

of SSDs, however, the assumption is vital for obtaining useful estimates for the factor ef-
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Table 8: Experimentwise Type I Error Rates and Power

Number of Effects α = 0.05 α = 0.1 α = 0.2 α = 0.5
Experimentwise Error Rate

0 0.054 0.100 0.210 0.510
1 0.016 0.038 0.078 0.283
2 0.003 0.013 0.031 0.136

2+- 0.003 0.009 0.024 0.129
3 0.000 0.003 0.015 0.069

3++- 0.001 0.004 0.012 0.069
4 0.000 0.000 0.002 0.027

4+++- 0.000 0.000 0.002 0.028
4++– 0.002 0.002 0.005 0.029

5 0.000 0.000 0.000 0.002
5++++- 0.000 0.000 0.000 0.000
5+++– 0.000 0.000 0.000 0.000

Power for at least one effect
1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000

2+- 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000

3++- 1.000 1.000 1.000 1.000
4 0.998 1.000 1.000 1.000

4+++- 0.999 1.000 1.000 1.000
4++– 0.998 1.000 1.000 1.000

5 0.947 0.985 0.999 1.000
5++++- 0.910 0.952 0.976 1.000
5+++– 0.920 0.968 0.992 1.000

Power for all effects
2 0.990 0.990 1.000 1.000

2+- 0.994 0.998 1.000 1.000
3 0.996 0.999 1.000 1.000

3++- 0.995 1.000 1.000 1.000
4 0.986 0.999 1.000 1.000

4+++- 0.989 1.000 1.000 1.000
4++– 0.985 0.998 0.999 1.000

5 0.881 0.960 0.979 0.982
5++++- 0.849 0.923 0.953 0.955
5+++– 0.848 0.934 0.961 0.963
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fects. Since the complications with SSDs has to do with obtaining proper estimates for the

effects (rather than estimation of the error variance), adding replication to a SSD would

accomplish little. Furthermore, the rule of thumb set forth by Box and Meyer (1986) which

defines effect sparsity as 20% or fewer of the factorial effects are active does not apply for

SSDs. For instance, 20% of k = 138 exceeds the sample size for the AIDS data. Corre-

lations among the contrast estimates makes clear identification of even 5% of the factors

infeasible. Unless a very few large effects truly dominate, SSDs will not be informative.

Additivity is also a requirement for successful interpretation of SSDs. We suspect that

the AIDS model interactions cannot be ignored. If this is the case, it is even less surprising

that the SSD, with the purpose of identifying important main effects, failed to be effective.

One might consider the use of group screening methods (see Morris (2006) for an overview)

as an alternative to SSDs when interaction effects are plausible.

5.2 Analysis of SSDs

Naive p-values, which are unable to account for the multiple comparison aspect of model

fitting with SSDs, do not control against over-fitting. Furthermore, any criterion that ig-

nores the number of factors under consideration (which includes information criteria such

as AICc) is flawed in the context of SSDs.

To illustrate this point, consider augmenting the 28-run Plackett-Burman design in 27

factors with two-factor interaction columns. In particular, one could construct a 28-run

SSD with up to 378 factors using only the main effect and two-factor interaction columns.

Following this construction method, we investigate five designs: the 27-factor Plackett-

Burman design and four SSDs with k = 50, 100, 150, 200. For each design, we simulate

100 response vectors with each y1, ...,y28 from a N(0,1) distribution and fit models of size

q = 1, 2,..., 10 found via forward selection. For each fitted model, R2 is computed as a

measure of model adequacy. Figure 3 displays the average R2 for each design and model
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Figure 3: R2 vs. Number of Factors - Null Model

size. Note that forward selection was utilized here for ease in simulation; the mean R2s

from all-subsets would be even larger.

Simulating from the null model, Figure 3 clearly indicates that as k, the number of

factors under consideration increases, the perceived systematic variation explained by the

fitted model of a given size q also increases. Therefore, true effects may potentially be

masked in SSDs with a large factors/run size ratio. That is, if on average the best s-variable

model explains >80% of the variation when there are no true effects, our ability to identify

s (or more) true effects is clearly diminished. This observation is pertinent both for the

choice of SSDs and their analysis.

Sections 2 and 3 introduced a means to construct (approximate) p-values for the global

randomization test based on all-subsets. This, in conjunction with adjusted p-values for

individual terms as proposed in Section 4, provides a simple strategy for ascertaining sig-

nificance in SSDs and thus, a starting point for follow-up experimentation. The ability to

approximate the all-subsets randomization test means that this procedure can be applied to

any all-subsets analysis of SSDs. This latter statement is true provided that it is feasible to

perform all-subsets regression once up to a specified (and reasonable) number of terms in

the model.
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Throughout, we have assumed that n is sufficiently larger that one must sample from

the n! permutations of Y . However, for n = 6, rather than sampling, one should examine all

720 permutations to compute p-values, which would then be exact rather than estimated.

What about really large cases? Li (2008) reports an application of a SSD with 120 runs

and nearly 500 factors. In such a case, all-subsets for even four factor models requires

comparison of 2.57 billion models, which is almost certainly infeasible by most modern

means. With 500 factors, however, surely one or two dozen factors would have systematic

effects large enough to warrant further study. In such a case, the model fitting strategy must

change to another method, such as a Bayesian variable selection (Chipman et al. (1997)),

the Dantzig Selector (Phoa et al. (2009)), or a genetic algorithm. Then, the randomization

tests we have recommended could easily be applied to models obtained by any of these

methods. Even though we suggest the use of all-subsets regression, we believe randomiza-

tion tests should be used regardless of the model fitting procedure employed for SSDs.
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